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Eye movements are essential to primate vision but introducepotentially disruptive
displacements of the retinal image. To maintain stable vimi, the brain is thought
to rely on neurons that carry both visual signals and inforntn about the current
direction of gaze in their ring rates. We have shown previaly that these neurons
provide an accurate representation of eye position duringxation, but whether they
are updated fast enough during saccadic eye movements to suport real-time vision
remains controversial. Here we show that not only do these n&ons carry a fast and
accurate eye-position signal, but also that they support iparallel a range of time-lagged
variants, including predictive and post dictive signals. & recorded extracellular activity
in four areas of the macaque dorsal visual cortex during a saade task, including
the lateral and ventral intraparietal areas (LIP, VIP), artle middle temporal (MT)
and medial superior temporal (MST) areas. As reported prexisly, neurons showed
tonic eye-position-related activity during xation. In adition, they showed a variety of
transient changes in activity around the time of saccadesncluding relative suppression,
enhancement, and pre-saccadic bursts for one saccade diretton over another. We show
that a hypothetical neuron that pools this rich population etivity through a weighted
sum can produce an output that mimics the true spatiotempor&ddynamics of the eye.
Further, with different pooling weights, this downstream e position signal (EPS) could
be updated long before € 100 ms) or after € 200ms) an eye movement. The results
suggest a exible coding scheme in which downstream computdions have access to
past, current, and future eye positions simultaneously, pviding a basis for visual stability
and delay-free visually-guided behavior.

Keywords: eye movements, posterior parietal cortex, vision, electrophyisology, population codes, decoding

INTRODUCTION

The primate visual system makes use of the exquisite setsitifithe fovea by continually
directing the eye toward new areas of interest. As a conseguef this active strategy, visual
information must be combined with up-to-the-moment inforrtian about eye (and head)
position to make sense of the environmeriidechting and Flanders, 199Zhis additional

information allows the brain to take into account self-irskd changes in the retinal image
and to construct stable representations of visual space—eaquisite for goal-directed behavior
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Morris et al. Predictive and Delayed Eye-Position Signals

(e.g., reaching, or avoiding collision during self-mofjodn  continuous eye-position signals, including anticipatorgra
previous work, we have argued that suitable eye positiolag, and delayed signals. We predicted that these EPS are
signals (EPS) are available in the middle temporal (MT), nediaepresented in a distributed fashion across the neurons in
superior temporal (MST), ventral intraparietal (VIP), and lete areas LIP and VIP in the intraparietal sulcus, and areas MT
intraparietal (LIP) areas of the posterior parietal cortex @P and MST in the superior temporal sulcus. Our hypothesis is
(Bremmer et al., 1997a,b, 1999; Duhamel et al., 1997; Baussaduilt on the idea that even if inputs that explicitly encode eye
and Bremmer, 1999; Schlack et al., 2005; Morris et al., 201@psition are slow to updateX{ et al., 201} the in uences
2013. of corollary discharge (e.g., suppression, enhancement, etc.
The instantaneous eye position, however, is only one aspectbtihamel et al., 1992; Bremmer et al.,, 2009; Ibbotson and
eye position that is of interest to active vision. Severdtwewn  Krekelberg, 2001 may provide su cient information about
peri-saccadic phenomena would bene t from easy access to pashpending eye movements to predict future/past eye positions.
current, and future eye positions. For instance, before @keg  Similar ideas have been proposed in modeling studies to a¢coun
a saccade, the visual system could use information on thedut for predictive remapping of visual activity during saccadesza
eye position to remap visual information from neurons curtign  LIP (Schneegans and Schoner, 2012; Ziesche and Hamke), 2014
receiving input from a speci ¢ spatial location to those reaagv To test this hypothesis, we developed a novel approach in
input from that location after the saccadBifhamel et al., 1992; which we construct a linear decoder whose output provides a
Morris et al., 2007; Schneegans and Schoner, 2012; Ziesthe ametric representation of eye position, and is computed as a
Hamker, 2013t Similarly, the comparison of visual input before weighted sum of instantaneous ring rates in a recorded sampl
and after a saccade that may contribute to perceptual stgbiliof neurons. The pooling weights are chosen to approximate
across saccades could bene t from knowledge of the eye positia speci ¢ desired output (e.g., a synthetic EPS that leads the
before and after that saccader{me et al., 2011; Crapse and actual eye) and the performance of the decoder is quanti ed
Sommer, 2012 In addition, future eye-position signals could be using an independent set of experimental trials (i.e., in sros
used to suppress the activity of (subsets of) visual neuroriaglu  validation).
the saccade (a potential neural correlate of saccadic supgmess The main di erence with the decoding approach used by
(Ibbotson and Krekelberg, 20),.while boosting the activity of Graf and Andersen (2014% that our linear decoder generates
neurons that will process visual information near the saecada continuous, metric representation of eye position, not just a
target (a potential neural correlate of shifts in attentiafigsche categorical estimate of the most likely eye position. One can
and Hamker, 2011; Zirnsak et al., 2011, 2014 general, any think of this linear decoder as a convenient theoreticalstounct
form of transsaccadic integration of information would see that quanti es whether certain information (e.g., the eyesjion
to require access to a combination of current, past, and fitursome 200 ms previously) is reliably present in the recorded cells.
eye positions. Here we asked whether such exible eye-paositicAlternatively, one can view this construct as an Uber-neuron
signals are available in LIP, VIP, and MT/MST. that could reasonably exist in the brain, but the experimesite
In the one area where multiple groups have studied the perielectrode happened not to get near it in this particular studg W
saccadic dynamics of eye position signals (LIP), the rekalte  return to this in the Discussion.
been quite contradictory. We showed that the EPS in LIP is We rst analyzed how ring rate changes over time at the
accurate and precise during xationV(orris et al., 2015 but time of saccades in darkness. Consistent with the resuli&iof
for brief periods around saccades, the signal rst leads,taed et al. (2012)the neural dynamics of individual neurons matched
lags the true eye positiorV(orris et al., 201p. This mismatch neither future, nor true, nor past eye position reliably. Using
is consistent with errors in localization that occur aroutite  our Uber-neuron analysis, however, revealed that the disteith
time of saccadesHpnda, 1991; Dassonville et al., 1992; Capatterns of activity across many neurons provided a highly
et al.,, 1997; Lappe et al., 200Xu et al. (2012) however, exible source of information about eye position. Speci callye
reported that the EPS in LIP lagged behind the eye at thiound reliable estimates of future eye position startin00 ms
time of saccades by around 150 mzaf and Andersen (2014) before saccade onset and reliable memories of past eye position
nally, showed that the population activity in LIP contained upto 200 ms after a saccade.
information to accurately classify the past, current, antufe
eye position (contradicting the Xu et al. result). Moreover,
this accuracy was not reduced at the time of saccades as OWgATERIALS AND METHODS
might expect if eye position inaccuracy were related to peri-
saccadic mislocalization as we claimétb(ris et al., 201 We  The current study consists of a re-analysis of electrophygic#b
will return to these issues in the discussion, but in our viewdata reported previouslyorris etal., 2012, 20)3Experimental
these discrepancies among studies arise primarily due toddnit and surgical procedures are described in full Morris
sampling of neuronal populations, and a focus on the limitedet al. (2012)and Bremmer et al. (2009)were performed in
information carried explicitly by single neuron&( et al., 201  accordance with published guidelines on the use of animals
vs. the rich information that can be extracted from populationsin research (European Council Directive 86/609/EEC and the
of neurons Morris et al., 2013; Graf and Andersen, 214 National Institutes of Health Guide for the Care and use of
In this contribution we test the hypothesis that the dorsalLaboratory Animals), and approved by local ethics committees
visual system carries in parallel a continuum of time-laggedRegierungsprasidium Arnsberg, Ruhr-Universitat Bochum).
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Electrophysiology could capture the observed neural dynamics at the time of
We recorded single unit action potentials extracellularlyngs saccades. As we were particularly interested in saccadetidin
single tungsten-in-glass microelectrode penetrationstigh the  speci ¢ dynamics, we rst subtracted the response time course
intact dura. Recordings were made in four regions across fr rightward saccade®y,q) from the time course for downward
total of four hemispheres in two macaque monkeys, includingaccadesRyq). The resulting di erential time courses (a matrix
the LIP and VIP areas of the PPC, and the MT and mediain which each row represents a time point, and each column a
temporal (MST) areas. LIP and VIP were recorded within theneuron) were subjected to PCA. This analysis extracts aerer
same hemisphere and MT and MST in the other, in oppositeset of time courses; the rst few of these time courses ses\& a
left-right con guration across the two animals. We reporteth reduced basis to describe a large fraction of the varian¢bdn
results from all neurons for which we recorded at least Gdnger  full complexity of the saccade direction speci ¢ changes imgi
experimental condition. A total of 276 neurons were analyzedsate in the population.

including 74 from area LIP, 107 from VIP, and 95 from areas MT

and MST combined. Linear Decoding
The aim of our main analysis was to determine whether the
Behavior activity of the recorded neurons could be combined into a p&ir o

The animal was seated in a primate chair facing a transluce@UtPUt v_anables& Al an(_le -1/, that V\{O_UId mimic the_ animal's
screen (60 60 ofvisual angle)in near darkness and performeaIrue horizontal and vertical eye position over timigure 1).

an oculomotor task for liquid reward. The animal's head wasl €S€ estimated eye positions were computed by taking weighte

stabilized using a head-post and eye position was monitoretHMS of activity across the population of neurons at each paint i
using scleral search coils. The xation dots were smatitfght-  UMe*
emitting diodes back-projected onto the screen (Gdtameter,

0.4 cd/cm2). Each trial of the animal's task began with zati

on a dot for 1000 ms. The dot then stepped either rightward or
downward by 10 (with equal probability), cueing the animal

to perform a saccade to the new position and hold xation for ¥ .t/ D R.t/by Coy

a further 1000 ms. The initial position of the xation dot was

selected pseudorandomly across trials from ve possibleilmest whereb is a column vector of weights (one number per neuron)
arranged like the value 5 on a standard six-sided digy[D  andcis constant. One can interprtand® as ring rates of two
[0,0],[ 10,10],[10,10],[10,10],[ 10, 10]). Trials in which the downstream neurons that represent the eye position expligitly i
animal failed to maintain gaze within 1of the dot position their ring rate. We call these neurons “iber-neurons.” Inigh
during xation intervals or to perform the saccade within 56 caseb represents the (unitless) strength of the synapse connecting
of the cue to move were terminated without reward (and noteach recorded neuron to the tiber-neuron anits spontaneous

K.t/ D R.t/ by C cx (1)

analyzed). ring rate. Alternatively, one can viewk and ¥ as abstract
_ representations of linearly decoded eye position information (
Data Analysis degrees of visual angle]] present in the recorded population.

All analyses were performed in MATLAB R2014b (Theln this interpretationb has units of /spike andc has units of
MathWorks, Inc.). The raw data included timestamps fordegrees.

the recorded spikes for each neuron and eye position data. We use matrix notation to link these equations to the data.
Spike-times within each trial were expressed relative to th&sing the horizontal channel as an example, we modeled the
onset of the 10 amplitude primary saccade (detected o ine relationship between the eye's true position and ring rates a
using eye velocity criteria), and converted to instantareo

ring rates using a 50 ms wide counting window stepped in

25ms increments from 800 ms toC800 ms. These ring rates XD Rbx C + (2)
were then averaged over trials separately for each of the 10

task conditions (ve initial xation positions and two sacde where + represents additive noise. For rightward saccades, the
directions). The data for the ve initial positions were then target of the regressionX{,q) was approximated by a scaled
averaged to yield a single ring rate time course for each ofumulative Gaussian that closely matched the spatiotemporal
the two saccade directions (rightward and downward) forheacPro le of the average saccade (meam; D 25ms, standard
neuron. For each cortical area, the time courses for the twgeviations D 10). For downward saccades, which contained
saccade directions were compiled into matrid@g,q and Ryyg, ~ N€9ligible horizontal displacement, the target eye positkp,6)

in which the number of rows was equal to the number of timeWwas setto 0 for all time points. Analogous target representation
points and the number of columns was equal to the number ofvere used for the vertical coordinate of the eye (Y).

neurons. The design matrix, R, is a two dimensional matrix
representing the ring rate of each neuron (columns) recorded
Principal Component Analysis at a speci c time relative to the saccade (rows). An additiona

We used principal component analysis (PCA) to investigateolumn of ones was included to represent the constant o set in
whether a small number of typical ring rate modulation pattern the linear model ¢in Equation 1).
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FIGURE 1 | Selective pooling of neural activity generatesti ~ me-lagged eye-position signals.  Two Uber-neurons bt and l?) were constructed to represent the
horizontal and vertical components of eye position througlheir ring rates. Each took a weighted sum (with weightshby and by, respectively) of activity (R) across a
sample of experimentally observed cortical neurons (cies). Idealized time courses for these decoder units are showfor two orthogonal saccade directions
(rightward and downward). Using one set of weights (blue anced), X and ¥ carry a predictive representation of eye movements (the vécal dashed line indicates the
actual onset of eye movement). Using a different set of weig# (yellow and purple), their representation lags behind$ié actual eye. Both time courses were decoded
from the same spatiotemporal patterns of neural activity ithe population. (Note that for the purpose of visualizatigrthe downward saccade in this and all other
gures is plotted as if it was upward).

Equation 2 is therefore a set of linear equations with unknow [0-100] and noting the smallest value at which cross-vétta
parameter®y. This column vector represents the contribution of performance stabilized). This regularization approach reduc
each neuron to the horizontal eye position. The last entryhiist  variance in decoder estimates by preventing over- ttingsang
vector represents the constant o sekj. Importantly, although from colinearity among predictor variables (in this case ocmg
the weights were di erent folk and ¥ (Equation 1),they were responses across neurons).
xed across the two saccade directjdhat is, the decoder had After estimatingby, we used the remaining trials (test set) to
to use the same read-out for eye position irrespective of sleccaconstruct a newR matrix, and generated predicted eye positions
direction. This is an important criterion for a useful eye-fim  (X) by evaluating Equation 1. This use of independent data for
signal.by was therefore estimated simultaneously across bothy estimation andX prediction ensures that the results re ect
saccade directions by concatenating the regression Ba(ggly  reliable aspects of neural representation in cortex and net th
and Xgwg) in time and treating them as a single time course. Theexploitation of noise to t the target signal. To obtain estites
design matricesR,q and Rywg) Were concatenated in the same of reliability, we repeated this cross-validation proce€¥)tmes
way. by designating new random subsets of trials as train andstetst

To estimateby, we selected half of the experimental trialsData gures throughout this paper show the mean and standard
randomly (train set) from each of the 10 task conditions fordeviation of these estimated eye positions across crogatial
each neuron to construdR and then solved the linear system sets.
using a regularized form of regression (“ridge regression”
using the “ridge” function in MATLAB). Ridge regression Time-Lagged Eye Position Signals
encourages sparseness in the read-out by penalizing the decod® determine whether a neural population could support
for large regression coe cientsartinez and Martinez, 2007  predictive or delayed representations of the actual eye mongme
Speci cally, the objective function that was minimized tothe general linear model analysis was repeated using a range of
estimateby included not only the standard cost terrg (| e., sumtime-lagged eye signals as the target variable for the Egres
of squared errors), but also an additive penalty tegm, |le| ;  Specically, the meann) of the cumulative Gaussian used to
thatis, the sum of the squared pooling weights across allovesjr model eye positionX and the analogou¥ in the estimation
scaled by a shrinkage parameter (set to 30 for all results teghor step of Equation 2) was varied to generate lags frod00 ms
here, chosen empirically by testing a wide range of valua® C400ms in 100 ms steps. Negative and positive lag values
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correspond to predictive and delayed signals respectivelgifler RESULTS
we refer to the temporal o set between the target signal N o _
and the actual eye as the “target lag.” Note that these timéd/e recorded the spiking activity of neurons in macaque areas

shifting operations were applied only to the target signal fer t LIP, VIP, MT, and MST during an oculomotor task consisting of
regression, not the neural data. rightward and downward saccades. We have shown previously

for this data-set that many neurons in all four areas showi¢on
changes in ring rate across changes in eye positibforfis

et al., 2012, 20)3In addition, however, almost all neurons,
including those without signi cant eye position e ects, shaive
modulations of neural activity around the time of the saccade

Quanti cation of Achieved Signal Lags
The linear readout typically generated sigmoid-like
representations of eye position over time. If the output

were perfect, the times of these sigmoidal transitions woulg,q dynamics of these changes varied greatly across neanchs

have matched those of the target signals—that is, the "aetlie i, nany cases depended on the direction of the saccadic eye
lag” would match the target lag. To quantify the achieved lag,,vement. as we show next.

for each target lag condition, the mean outputs of fend &

units over all cross-validation sets were t with a cumwati Pgpulation Dynamics

Gaussian function (using “Isqcurve t" in MATLAB) that had 1¢ jjustrate the diversity of peri-saccadic dynamics across
four free parameters (mean, standard deviation, amplitudé, anpeyrons, we performed a PCA on the saccade direction speci ¢
vertical o set). These parameters were estimated simutigsly  components of the ring rate (see Materials and Methods),
across both saccade directions by accumulating t errom{su separately for each cortical region (MT and MST neurons were
of squared residuals) across the two saccade channelgiee. pooled). The rst three principal components for each cortical
R-unit for rightward saccades, and tHE-unit for downward  5rea are shown iffigure 2 and together accounted for 75, 66,
saccades). The di erence between the tregarameterandthat ang 70% of the variance across neurons for areas LIP, VIP,
of the zero-lag condition [i.e., 25 ms (because data wega@li  and MT/MST, respectively. This implies that the typical time

to saccade onset)] represented the achieved lag. The sippe goyrses of these neurons can be described as a linearlytagigh
provided a measure of signal velocity, which we converted to @ mpination of the curves shown Figure 2

measure of saccade duration based on the interval between th The components revealed complex dynamics underlying
1st and 99th percentile of the Gaussian. The variance of thegge ring rates of these neurons. The rst component, for
parameters was estimated by repeating the sigmoid tto each @yample, consisted of a broad enhancement or reduction of
the 1000 cross-validation sets. In those cases, we coredrdie
optimization by xing the amplitude and o set parameters to
their values from the t to the mean across cross-validatsmts
and estimated only the mean and slope.

Sparseness and Weight Analysis
To analyze how much each recorded neuron contributed to
the decoding performance, we rst determined, for each targe
lag, and separately fok and ¥, the mean weights across
cross-validation sets. We restricted our analysis to talggs
that were well captured within each cortical area, de ned as
a total R? of greater than 0.75 for the peri-saccadic epoch
(i.e., 100ms through toC200 ms for LIP and VIP; 100ms
through toC100 ms for MT/MST; seEigure 7). [The validity of
examiningmeanweights rests on an assumption that the decoder
from those weights provides a good t to the data. We con rmed
that this was the case for all cortical areas and across taeget
lags (allR2 > D 0.87)].

We de ned a neuron's “pooling weight” as the average of
its absolute weight values $ and . These aggregate pooling
weights were normalized such that their sum was equal to ONeFIGURE 2 | Principal component analysis of neural activity re  lated to
across the popu|ati0n_ A poo”ng We|ght of zero indicates a saccade direction. The rst three components (PC 1-3) for each of the
neuron that is not used by any of the tber-neurons, Whereascortical areas are plptteq relative to saccade ons_et. Compnen_ts are ordered

. . . by decreasing contribution to the total variance (i.e., PC&xplained the most
a WEIght of 0.05 indicates a neuron that contributes 5% of thevariance). These components reveal a variety of peri-sacdic effects of neural
total input to the Uber-neurons. FoFigure 9 we constructed activity, including broad enhancement and suppression andbiphasic
a histogram across the sample of recorded neurons for eaghnodulations. The shaded regions represent standard errorsand were
cross-validation set and then averaged the bin values sicets obtained by repeating the PCA on 1000 bootstrapped samples bneurons

. : — e (i.e., resampling neurons). LIP, lateral intraparietal @geVIP, ventral intraparietal
and ta.ltrge; :ﬁgs' Lhese mean hlstograms prowde InSIth t area; MT/MST, middle temporal and medial superior temporalraas.
Sparsity ot the code.
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activity for all three cortical regions. Because we analyhed directions) for areas LIP, VIP, and MT/MST, respectively.
saccade direction-speci c time courses, this correspondanto Moreover, the timing and velocity of the transitions from the
enhancement/reduction for one saccade direction relativiie  pre-saccadic to post-saccadic positions were close to those of
other (and is therefore complementary to the general changdbe actual eye movement. Zooming in on the peri-saccadic
in peri-saccadic ring rate discussed Bremmer et al., 2009 interval (i.e., by calculating terror only within 100 ms e&ccade
The de ections began shortly before ( 100ms) the onset of onset and o set),R2 values were 84, 89, and 83% for areas
the saccade and did not stabilize until roughly 150 ms aftetIP, VIP, and MT/MST, respectively. There was, however, some
the eye landed at the new xation position. The scores fodegradation of the representation late into the second aati
this component (i.e., the weight of a component for a neuronjnterval, starting 400 ms after the saccade, more so in areas VIP
or, equivalently, the projection of a neuron's time course orand MT/MST than in LIP. This is in contrast to our previous
the relevant component) were distributed across positive andiding, where we showed that an accurate representation of
negative values (data not shown), suggesting an approximatiee eye is available at this time (using a non-linear decgdin
balance between enhancement and reduction for rightwardpproach, optimized for the xation interval).
and downward saccades in our sample. A second prominent .
component showed a sustained di erence before and after thé IMe-Lagged Representations of Eye
saccade (e.g., PC2 in LIP, PC3 in VIP and MT/MST); intuitivehMovements
such a component is necessary to carry sustained eye positidhe results presented irFigure 3 show that an accurate
information during xation. representation of the eye during xation and across saccésles
The PCA analysis serves mainly to illustrate the richness @vailable in the population activity of neurons in areas LIFRVI
the response time courses in the population. Next we turn to ouand MT/MST. This information can be read out by downstream
population decoding approach, in which such richness is not anits within a single (i.e., monosynaptic) computational step.
sign of “inconsistent behavior” (cKu et al., 201Pbut the basis Next we examined whether the same neural populations could in

for a exible neural representation. parallel support representations of the eye that were updated in
) ) o advance of the actual eye—that is, predictive eye-posit@grais
A Flexible Representation of Eye Position like that shown inFigure 1 We also examined the opposite

We used a linear decoding approach to reveal information abowtcenario: EPS that were updated only after the eye has already
eye position and eye movements in the recorded neural datanded at the new xation position.

(Figure 1). Two arti cial downstream units were constructed:  We constructed a range of synthetic eye-position signats) ea
one to represent the horizontal coordinate of the eye (X), andvith a di erent “target lag,” de ned as the time interval betan
another to represent the vertical component (Y). The ringeat the sigmoid step of the regression target and that of thealctu

of these units were assumed to be isomorphic with eye positiorye. A unique set of pooling weights was estimated for the dutpu
where 1 spike/s was equivalent todf eye rotation. We refer to variables K and §) for each synthetic EPS (see Materials and
these units as Uber-neurons. Methods).

Each (ber-neuron took a weighted sum of the recorded Figures 46 show the output of theé) and ¥ units for a
neural activity from a given cortical area. In a rst analydise range of lags (from those that lead the eye by up to 400 ms
weights were optimized such that the predicted eye position® those that lag by up to 400 ms), separately for each cortical
represented by the outputf-and ¥—approximated the true region. The target signals are also shown. The recorded nsuro
spatiotemporal dynamics of the eye (i.e., the xation-saecad supported a diverse range of dynamics, including represeamtsti
xation sequence of the behavioral task). The optimal wesght of eye movements that were either fully predictive or delajred
were estimated from 50% of the trials and tested in crossexample, the output of th& and i units closely matched the
validation with the remaining 50% of trials (see Materiatgla target signal that lead the actual eye by 100 ms, in both rigtdw
Methods). Importantly weights were xed over time and acrossand downward saccade conditions and in all three cortical
both saccade directiomsccordingly, the only factor that could areas. This representation of the eye reached the new xation
lead to changes in the outputs Bfand ¥ over time and across position 50 ms before the animal's eyes had actually begun to
conditions was a change in the activity of the recorded nesro move. Remarkably, with a di erent set of pooling weights, the

Figure 3 shows the output of th& (blue) and¥ (red) units same neurons were equally able to represent an eye-position
for rightward and downward saccades, plotted separately faignal that was delayed by 100 ms relative to the actual eye.
each cortical area. For comparison, the true eye position is There were, however, limits to the neurons' ability to re s
shown (black and gray). The linear read-out provided a goodime-lagged eye-position signals. Target signals that wedated
match to the spatiotemporal prole of the eye for all three more than 100 ms before or 200 ms after the saccade were t
cortical regions. Th& unit, for example, showed a sigmoid-like poorly by the linear read-out model. In those cases, the outputs
time course during rightward saccades but remained redhtiv either drifted slowly toward the post-saccadic eye positiog. (e.
constant during downward saccades. Tifeunit showed the for target lags> 300 ms), or showed a step-like transition at a
opposite pattern. time that did not match that of the target sign&ligure 7 shows

Coe cients of determination R2) indicated that the linear the goodness of t R%) for all target lags, plotted separately
predictions X and ) accounted for 85, 80, and 71% of thefor each cortical region. Fit measures are provided for tHe fu
variance in true eye position (over time, and across saccadine courses, and for when the calculations were restri¢ted
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FIGURE 3 | The dorsal visual system supports accurate, zero-  lag representations of eye position.  Each plot shows the output of the X (blue) and Y (red)
decoders over time, plotted relative to saccade onset. Datare plotted as eye position in degrees of visual angle for @ict comparison with the true eye (black and
gray), but can equally be considered to be ring rates of the Ubr-neurons. The top and bottom rows correspond to rightwardand downward saccades, respectively.
The same pooling weights were used for the two saccade diredbns, so the different observed time courses re ect only chages in the underlying activity of the
recorded neurons. The plotted values and shading are the me® and standard deviations, respectively, of the decoder aiput across all cross-validation test sets.

the [ 100; 100] ms “peri-saccadic” interval of the target signaas displaced. Moreover, the decoders used xed weight& for
(that is, around the time the target signal was updated). €hesand® across both saccade direction conditions. In this lighg th
goodness of t measures suggest that neurons supported aecurachieved lags for the target lags 0800 ms and 400 ms were
representations across a range of time-lagged signals,tfrose  curiously early € 200ms). Closer inspection d¢figures 4-6,
that led the eye by 100 ms through to those that lagged by aB mubiowever, reveals the explanation for this e ect: the decoder
as 200 ms. achieved its solution in those cases by allowing the eydiposi
To quantify the dynamics of the decoders, we t cumulativesignal to drift obliquely before the saccade direction wasviam,
Gaussians to the predicted time courses (shown by the grees a compromise between the two possible directions. A useful
curves inFigures 4-6). The in ection point of the t (i.e., the EPS, in contrast, should specify the true future, currentpast
Gaussian's mean) represented the achieved signal lag, &nd tye position, not an amalgam of possible positions.
interval between the 1st and 99th percentile of the Gaussian We therefore asked at what tintBrection-speci «hanges in
was used to estimate the duration of the predicted saccade. By eye position representations emerged. To this end, panel B
comparing these measures with the equivalent features of ttie Figures 4-6 shows the di erence in time courses between the
target signal, we gain insight into the ability of this nenab two saccade directions within each channel (i.e., horiaband
population to represent a speci ¢ lagging EPS. vertical). For most target lags, the data recapitulated thmachics
Figure 8 shows these lag and duration measures for all targeteen in the raw decoder output, con rming that the Uiber-nenso
lag conditions, plotted separately for each cortical arese Thin those cases carried true, direction-speci c EPS. For tlgeta
achieved lags matched those of the target signal for alesimen lags in which the decoder drifted obliquely in anticipation,
except those in which the target signal anticipated the eye Hyowever, very di erent dynamics were observed. Consistetit wi
more than 200 ms. The predictive and delayed nature of manintuition, direction-speci ¢ changes did not emerge untilartly
of these achieved lags was statistically signi cant {ihese for before the onset of the saccade. The timing and duration of
which the error bars in the gure do not cross zero). For thethese direction-speci ¢ transitions were quanti ed usingeth
extreme lags, however, the duration of the represented daccasame procedure as for the raw time courses (i.e., by tting
grossly over-estimated that of the actual eye movement.ddigo cumulative Gaussian functions), and are plottedFigure 8 as
match for both lag and duration was achieved only for lag 8me purple squares.
between 100 ms andC200 ms, consistent with the goodness of In sum, neurons in the cortical regions we examined
t measures reported above. supported a continuum of accurate, time-shifted represeateti
The generally poor performance of the decoders for targedf eye movements, including signals that led the eye by as
signals that led the eye by 300 ms or more was expected. Afteruch as 100ms and lagged by up to 200 ms. Target signals
all, the direction of the impending saccade could not havehat were updated outside of these bounds were approximated
been known to the neurons earlier than213 ms (the average poorly by the tiber-neurons, re ecting the limits of peri-sadia
saccade latency) before saccade onset, when the xatiort poimformation about future and past eye positions.
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FIGURE 4 | Predictive and delayed representations of eye pos ition co-exist in area LIP. The decoder optimized pooling weights to best match a synthéc
eye-position signal (black and gray) that shifted to the newation position either before (negative target lags) or &t (positive target lags) the actual eye movement.
(A) Each row shows the output of the decoder (in the same format agigure 3) for a given target lag, using a xed set of pooling weights foboth rightward and
downward saccades (columns). The saccade channels were twh a sigmoid (green curve) to parameterize the lag and saccadduration of the decoded
eye-position signal (values shown ifrigure 8). (B) The direction-speci c components of the decoder time courses shown in (A), calculated as the difference between
rightward and downward saccades for each channel (the vertal channel is plotted with a sign- ip for visualization).

How is the Labor Divided across Neurons? across target lag conditions in all three cortical regiomegn

In principle, an Uber-neuron could match a target signal bycorrelations across all pairings of lags were 0.88 [BT&03],

assigning approximately equal weights to all neurons, at on@91 [STED 0.02], and 0.94 [STPE 0.00], for LIP, VIP, and

extreme, or high weights to one or a small number of neurorts anMT/MST respectively.

near-zero to the rest, at the other. We examined the sparsenes To explore this further, we calculated how much the

of the decoded representations by evaluating the contrilouti contribution of each neuron varied across the dierent lags.

of each recorded neuron to the Uber-neurons for each decodepeci cally, we calculated the di erence between each néesiron

(see Materials and Methods). The analysis was performed onlgaximum and minimum contribution and expressed this

for decoders that provided an adequate t to the target signatli erence as a percentage of its mean contribution over lags.

(de ned as a totalR? of greater than 0.75 for the peri-saccadicFigure 9B shows the distribution of these modulation values

epoch; se€igure 7). across the sample for each cortical region. On average, the
Figure 9A the distribution of these contributions for each contributions were modulated by 39% (STE3%), 31% (STB

cortical region. The bell-like shape of these distributionicates 2%), and 20% (STB 1.5%) for areas LIP, VIP, and MT/MST

that most neurons had intermediate contributions, coreigt respectively. These relatively small di erences in weiglersith

with broad pooling of activity across the population. Thefor individual neurons were apparently su cient to generateet

error bars in the gures represent the standard deviation ofdiverse range of time courses evident at the population level

these distributions across the di erent target lags. Themra§  (shown inFigures 4-6).

magnitude indicates there was a high degree of consisteney,

though the spatiotemporal dynamics of the output varied gseatl DISCUSSION

This hints that the di erent decoders were achieved usingyver

similar weights for each recorded neuron. Indeed, the mea@ur analysis shows that neurons in extrastriate and PPC carry

contributions for individual neurons were highly correémt a continuum of time-lagged representations of eye position,
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FIGURE 5 | Predictive and delayed representations of eye pos ition co-exist in area VIP.  Figure is in the same format agrigure 4 .

including predictive, zero-lag, and post dictive signalse3d Uber-neurons. Indeed{u et al. (2012)examined the updating
exible signals were found in all the regions we studied|uding  of gain- eld neurons across saccades and found that rintgra
those that are not directly involved in saccade planning (VIPmodulations lagged behind the eye by as much as 150 ms. In
MT/MST). The representations were not super cially evidentthat study, accurate localization behavior for stimuli meted
in the ring rates of single neurons but manifest only when earlier than this time was interpreted as evidence against the
population activity was read out appropriately by arti cial prevailing view of gain- elds and their role in spatial visiorhis
downstream neurons (“Uber-neurons”). With di erent synapti conclusion, however, was derived from the behavior of aetubs
weightings, Uber-neurons carried EPS that shifted towhedtew of neurons that showed peri-saccadic ring rate modulations
xation position in sync with the actual eye, led itby up to 188, that could be understood intuitively in terms of their gaiaelds.
or lagged behind it by up to 200 ms. These peri-saccadic lionits The remaining neurons—which made up roughly a third of
accurate time-lagged EPS align well with the typical duratib  their sample—showed more complex perisaccadic behavior and
the intersaccadic interval during normal vision 800 msBallard  were labeled as “inconsistent” cells. Our PCA results con rm
etal., 200p the considerable heterogeneity and complexity of perisaccad
The 100ms limitation on the predictive e ect is likely behavior in LIP and extend it to MT, MST, and VIP. Our
determined at least in part by the nature of the instructedpopulation decoding approach, however, treated this diversity
saccade paradigm used in this study; given the typical visuak a potent source of information about eye movements and
latencies in these areas, information about the impendicgade revealed that accurate eye position information is available
direction could not have been available much earlier. The-posthroughout the peri-saccadic epoch.
saccadic limit of 200 ms, however, was not constrained by our In our view, single neurons are unlikely to be devoted
experimental paradigm and re ects the fading neural memoryexclusively to the purpose of representing eye position.
of past eye positions in the neural population (or at least thafherefore, a search for Uber-neurons with dynamics likestho

available to a linear decoder). reported here would likely be fruitless. Neurons multiplex a
. large variety of signals in their ring rates and participate i
Can We Record from Uber-Neurons? a multitude of functions simultaneously. LIP ring rates, for

In light of our results, one might consider it curious that example, are in uenced by visuaC¢lby et al., 1996 motor
there are (to our knowledge) no empirical accounts of cottica(Barash et al., 1991; Snyder et al., )9%ftentional Bisley
neurons that exhibit zero-lag or predictive dynamics liker ou and Goldberg, 2003 choice Roitman and Shadlen, 20))Zand
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FIGURE 6 | Predictive and delayed representations of eye pos ition co-exist in areas MT and MST.  Figure is in the same format ag-igure 4.

reward-relatedl(ouie and Glimcher, 20)®ariables, all of which Categorical vs. Metric Decoding
vary over time (presumably contributing to their “incongst” In some respects, our conclusions mirror those of a recent
perisaccadic behavior). These extraneous contributionsato study that used probabilistic population decoding to examine
neuron's output would add to, and potentially mask, step-eye-position signals in LIPQraf and Andersen, 20)4Graf
like inputs related to eye position like those Figures 3-6. and Andersen also showed that LIP neurons carry information
Moreover, in our decoding analysis, it was purely a matter ofbout past, present, and future eye positions. There are, howeve
convenience that we converged the summed neural activity onimportant di erences between their study and ours.
a single output unit. We could have equally distributed this First, their decoders chose among a coarse experimental grid
pooled signal across a large number of output units with naf possible eye positions (i.e., the decoder was a classi er),
loss of information; and yet, doing so would render its stidq@| whereas ours estimated eye position as a continuous variable
nature essentially invisible to the naked eye at the leveimafle between a start and end position (i.e., it has a metric). The
neurons. constraints of workable experimental designs result in caxpl
Nevertheless, we nd the concept of a linear Uber-neurorconditional probabilities between eye movement parameters
appealing because it shows that the decoding we perform is n¢g.g., the rightmost eye positions in a grid can only be reddiye
complex and could be achieved in a monosynaptic computationghtward saccades). A classi er can exploit these continges
in the brain. Further, it provides a convenient way to visgalihe to achieve above chance decoding performance, even though
EPS, even though the brain might access these high-dimeaisio they are unlikely to be useful in real life. A metric decoder i
population codes in smarter ways than we can currently imagineanore in line with the type of signal the brain requires for spati
EPS are ubiquitous throughout cortex (Virotter and Celebrini, processing, and also has the practical advantage that one can
1999 V3A: Galletti and Battaglini, 19§9Vv4: Bremmer, 2000 study systematic errors on a ne spatial scale (é/guris et al.,
V6A: Breveglieri et al., 201¥6: Galletti et al., 1995rontal eye 2012, 2018
elds: Cassanello and Ferrera, 20@remotor areas3oussaoud Second, Graf and Andersen constructed a new decoder for
et al.,, 1998 In principle, each of these areas may containeach time window relative to saccade onset. For instance, to
similarly exible representations that support saccade-itesat  decode future eye position, they constructed di erent Bayesia
computations. Testing these hypotheses is an important doect classi ers based on ring rates in time windows before, dhgyj
for future work that will contribute to our understanding of and after the saccade. This approach accurately quanti es the
distributed computation in the brain. information available in each of these epochs, but it is noarcle
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FIGURE 8 | Dynamics of the decoded eye-position signals. (A)  The lag of
the decoded eye-position signals are plotted against thosef the target
signals. Perfect decoding would result in points along the nity line. Achieved
lags that were below zero (shaded region) correspond to repsentations of
the eye that were updated ahead of the actual eye(B) The duration of the
saccade represented in the decoder output, expressed as a réo of the actual

F'GURE_ 7 | The decoder output provided a good match to the synth  etic saccade duration. Error bars represent 95% con dence interals, obtained
eye-position signals across a range of lags.  Plots show the for each using MATLABS “nlparci” function and the Jacobian from thesigmoid ts in
channel at each target lag, quanti ed as the amount of variane in the target Figures 4 —6. The upper error bars for theC400 ms target lag in(A) have been
signal that was accounted for by the decoder output. Fit errowas calculated truncated.

across the full-time course, and over a restricted “peri-secadic” interval
centered on the time of the saccade in the synthetic target ginal (not the time
of the animal's actual eye movement).

and visual signals. Indeed, we cannot rule out the possgibilit
that at least some of the predictive information about futese
how the brain might implement this kind of read-out in which positions in our study is derived from visually-evoked aityiv
the decoder changes over timéu et al. (2012yaised similar Visual in uences, however, would be maximal immediateleaft
reservations in considering how the brain might switch beénw  the onset of the target (i.e.,130 ms before saccade onset, based
representations built from their “consistent” and “incos@nt” on the mean visual latency of 80 ms); and yet, these neurons
cells (which they treated as separate populations). In our studgupported predictive signals that remained stable at this time
however, the pooling weights were held constant over timand were only updated later (e.g., thelOO ms lag reported
and across saccade directions. This allows us to interpeet tthere, as well as any lag betweed00Oms and O [data not
decoder output as a proxy for signals that could be computedhown]). This suggests that visual in uences are unlikaly t
easily in the brain and motivates our coining of the Uber-account for the predictive eye-position signals reported here
neuron term; these signals are not just a quanti cation ofApplying our approach to experiments with stable visual displays
information that is, in principle, available in the population, or memory-guided saccades is needed to fully resolve this
but information that can be extracted in a monosynapticquestion.
step. In Graf and Andersen's study, the future eye position could be
Third, Graf and Andersen employed a memory-saccadéecoded reliably from the moment the target had been speci ed
paradigm, whereas our animals made immediate saccades @uven though the saccade itself did not occur until more thali h
visual cues. The memory-saccade paradigm has the advantagsecond later. This suggests that the decoder was able thaise t
that it can dissociate saccade planning from saccade egacuticurrent eye position and direction-selective planning atfivo
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FIGURE 9 | Distributed population coding of eye position. We
determined how much each neuron contributed to each decodeias a
proportion of the total output (“pooling weight”). We also dtermined how
much these single neuron contributions varied across the t@et lags (“weight
modulation”; see Materials and Methods)(A) A histogram of pooling weights
across neurons was computed for each target lag. The plotted/alues and
error bars are the mean and standard deviation across theseistograms.

(B) Histograms of the weight modulations. Mean modulation valkes are shown
by arrows. This gure shows that most neurons contributed to ech decoder,
and that different signal lags were achieved using only weatodulations of

these neurons also provide an accurate and precise representati
of absolute eye position during xation (albeit with a noméar
read-out approach). This suggests that the current results ca
nevertheless be interpreted in absolute terms by assuming a
simple combination of the two (relative and absolute) signal

Finally, Graf and Andersen observed that most of the eye
position information used by the decoder was obtained from a
small subset of neurons Q0), whereas our Uber-neurons pooled
broadly across neurons. This apparent discrepancy perhaps
re ects the dierent emphasis in the studies. Our decoder
assigns weights to neurons for their ability to provide comsist
information on the full spatiotemporal dynamics of a saccade.
This constraint resulted in a distributed code. Graf and Arse,
however, constructed a new classier in each 250ms time
window; it would seem that a small subset of neurons (i.e., a
sparse code) carries most of the information in each of these
windows.

Peri-Saccadic Mislocalization

In Morris et al. (2012)we showed that these neurons carry a
damped representation of eye position that could explain why
observers misperceive the location of stimuli that are akhe
around the time of a saccadéldnda, 1991; Dassonville et al.,
199). In that study, we divided the sample into two sub-
populations based on the slope of their gain-eld and the
direction of the saccade; one contained the neurons thaewer
moving from a low-to-high ring rate, and the other contaide
those making the opposite transition. Using the dierence in
activity between groups as a representation of eye position, we

read-out weights. Both of these properties are compatible \ith a distributed,
not a sparse code.

observed damped eye positions signal dynamics, such that the
decoded eye moved toward the saccade end-point predictively
but did not nalize its transition until after the real eye Ha
landed.
infer the future eye position (similar to modeling studigssche Although it was not framed as such, that analysis was in
and Hamker, 2011, 2014; Schneegans and Schoner). ZU1&  some respects a rudimentary version of the population decoding
absence of clear modulations in this performance at the timeeported here; that is, neurons in the two sub-populations
of saccade execution (their Figure 2) is consistent witts thireceived binary weights of 1 andl (though these weights had to
notion. Given the di erences in analysis and the coarsendss te re-assigned for every saccade direction, unlike in theeot
this categorical approach (discussed above), this resut doe study). Our current ndings show that given the freedom to
necessarily extend to the metric decoding we advocate herhoose graded weights, a decoder can generate a nearcegridi
and future work is needed to address this issue. Similarlygpresentation of the eye, as well as a range of time-lagged
our paradigm included only two saccade directions, potelytial variants.
allowing the decoder to exploit directional preparatory signa  This raises the question why the perceptual system makes
that might be weaker during normal, unconstrained vision. | errors in the context of this well-established experimental
remains to be seen whether a simple linear read-out rule lil¢ t paradigm. One explanation is that even if eye position
reported here generalizes to these other scenarios. Nelest) information is veridical, information on the location of ¢h
it's likely that our decoder—and the brain—exploits directi  stimulus on the retina may not bek¢ekelberg et al., 200.3In
selective modulations of activity before and during saesai addition, however, we suggest that although a suitable BPS i
complement potentially slower inputs that explicitly carrieceey available, the visual system may not have ready access to the
position information (e.g., proprioceptionyVang et al., 2007; required read-out under such arti cial conditions. Objeatarely
Schneegans and Schoner, 2012; Xu et al., 2012; Ziesche appear and disappear around the time of saccades during natural
Hamker, 2013 vision. As such, the read-out mechanisms that govern lpatiin

A fourth di erence between our study and that of Graf and should be optimized for the representation of objects during
Andersen is that their decoder provided estimatealidoluteeye  xation (Niemeier et al., 2003 When forced to locate peri-
position (i.e., the direction of the eyes in the head), whemmas saccadic objects, sub-optimal read-out of eye position maydble
provides an estimate of eye positigative to its starting position EPS with di erent lags, leading to a damped net representatfon o
We have shown previously using the same data-set, howewér, thihe eye.
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We tested this idea informally by omitting the peri-saccadic Taken together, these considerations suggest that a single,
epoch (i.e., 100ms either side of the saccade) during thgdobal EPS might be insu cient to support stable vision. Our
estimation of weights for each neuron, such that the decoderesults show that through appropriate synaptic weighting, an
is optimized for representing eye position during xation. We EPS can be tailor-made for a given neuron or population to
then predicted the EPS for all times, including the perisacad ensure that it is noti ed of changes in eye position only at the
window. As expected, this EPS was clearly damped, similar suitable time. That is, the cortex could be furnished with an
the one we reported previously, and qualitatively consistetit w essentially in nite number of di erent EPS, all achieveddligh
perisaccadic mislocalization. Of course, there are likeéheo unique pooling of signals. Local computations, thereforeyldo
factors at play, such as uncertainty regarding the temporakbn incorporate information about past, current, and future eye
of the visual ash Boucher et al., 200Q,Lvisual latencies and positions simultaneously. This could allow, for example, self-
persistenceRola, 200) and the in uence of spatial references induced changes in sensory representation to be dealt with

(Lappe etal., 2000 dierently to those caused by true changes in the outside
world (Crapse and Sommer, 2012; Ziesche and Hamker,
What are These Signals Good For? 2019.

Although perhaps counter-intuitive, a perfect, zero-lag Remarkably, our analysis of pooling weights suggests that
representation of eye position may in general be no morgrofoundly dierent time courses can be achieved through
useful to the brain than a range of other time-lagged signalsnodest local adjustments (20-40% on average) to a coarse and
such as those that are updated before or after eye movemenniversal weighting template. To an extent, this is not sising,

In the standard gain-eld model of spatial processing, thegiven that the target signals used here di ered only in the tigi
co-existence of eye-centered visual information and eysitipo  of the saccade representation and had in common the extensive
signals gives rise to an implicit, head-centered represientat xation intervals (the correlation between pairs of targ&rsals

of visual spaceAndersen et al., 1985; Zipser and Andersenwas between 0.35 and 0.91; mean0.68). Nevertheless, the
1988; Pouget and Sejnowski, 1997; Bremmer et al.)1Phis  profound global e ects of such subtle changes to the network
representation is thought to provide a basis for goal-dirdcte provides a striking example of the powerful yet obscure natdire o
actions, such as reaching and navigation, as well as stsg  distributed population codes. Further, it emphasizes the need f
integration (Pouget et al., 2002 For head-centered spatial population-level analysis techniques to unmask the underlying
information to remain accurate across eye movements, hewev representations.

both input types—visual and eye position—need to be updated

in synchrony. It takes time for rea erent visual input from dac
new xation to reach cortex, suggesting thadelayedPS would AUTHOR CONTRIBUTIONS
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